New AAP Guidelines for Early Onset Sepsis
Kimberly J. Seeger Langlais, MD
Assistant Professor, Neonatology
Medical College of Wisconsin

Early Onset Sepsis (EOS)
- Positive Blood OR CSF Culture within 72 hrs of birth
- Before GBS prophylaxis: 3-4 cases/1000 live births
- After GBS prophylaxis:
 - Overall 0.8 cases/1000 live births
 - 0.5 cases/1000 live births at ≥ 37 weeks
 - 1 case/1000 live births at 34-36 weeks
 - 6 cases/1000 live births at <34 weeks
 - 20 cases/1000 live births at <29 weeks
 - 32 cases/1000 live births at 22-24 weeks

Morbidity & Mortality of EOS
- Full term/ Late Preterm (LPT)
 - 60% of FT infants require intensive care for Respiratory Distress and/or BP support
 - Mortality:
 - 2-3% at ≥35 weeks
 - 1.6% at ≥37 weeks
 - 3.5% at ≥1500 g
- Preterm
 - 95% require intensive care for Respiratory distress and/or BP support
 - Mortality:
 - 30% at 25-28 weeks
 - 50% at 22-24 weeks
 - 35% at <1500 g

Pathophysiology of EOS in FT infants
- Begins in utero
- Most commonly:
 - Ascending colonization and infection of the uterine compartment with maternal GI/GU flora during labor
 - Subsequent colonization and invasive infection of the fetus and/or fetal aspiration of infected amniotic fluid
- Rarely before onset of labor
 - Acquired hematogenously across the placenta OR
 - Ascending route
- Can be a cause of 3rd trimester stillbirth

Pathophysiology of EOS in FT infants
- Typical organisms
 - GBS - 40-45% of all cases
 - E coli – 10-15%
 - Other Gram + (strept viridans, enterococci)
 - Other Gram negatives – 5%
 - S aureus - 3-4%
- Listeria monocytogenes – 1-2%
 - Usually transplacental hematogenous spread of infection BEFORE the onset of labor
 - Infrequent cause
Pathophysiology of EOS in Preterm Infants

- Begins in utero
- May be the same as for FT if after PROM or during PTL that is induced for maternal indications
- Usually is BEFORE onset of labor in PTL and/or PROM
 - Microbial-induced maternal inflammation can initiate parturition and elicit fetal inflammatory responses
- Inflammation from immune-mediated rejection of the fetal or placental compartment from maternal extrauterine infection or incited by the microbiota
- Can be a cause of 2nd and 3rd trimester stillbirths

Pathophysiology of EOS in Preterm Infants

- Organisms
 - Primarily vaginal in origin
 - Including low virulence organisms
 - Ureaplasma
 - Anaerobic species
 - E.Coli – 50%
 - GBS – 20%
 - Other Gram positives – 10% (strept viridans, enterococci)
 - Maternal oral flora (transplacental pathway)
 - Other Gram negatives – 20%
 - S aureus – 1-2%
 - Listeria monocytogenes – 1%
 - Anaerobes – 15% (B fragilis)

Risk Factors for EOS in Term and LPT Infants

- Predictive value
 - Gestational age
 - Maternal intraamniotic infection (IAI)
 - intrapartum fever
 - OB clinical diagnosis of chorioamnionitis
 - Duration of ROM
 - Maternal GBS colonization
 - Administration of appropriate intrapartum antibiotic therapy
 - Newborn clinical condition

Risk Factors for EOS in Term and LPT Infants

- Additional risk factors, but NOT independent predictors
 - African American maternal race
 - Twin gestation
 - Fetal tachycardia
 - Meconium stained amniotic fluid

Relationship between EOS and Chorioamnionitis

- Chorioamnionitis – risk factor for EOS?
 - Most infants with EOS are born to women with chorio
 - poor specificity
 - Only small proportion of infants born to mom’s with chorio develop EOS
 - NNT 450 FT infants who were exposed to chorio would have to be treated per case of confirmed EOS
 - Argument against using clinical diagnosis of chorio as a sole indicator of risk for EOS
 - NNT 6-40 preterm infants

Diagnosis of Chorioamnionitis

- ACOG chorio = intraamniotic infection
- Confirmed diagnosis
 - + amniotic fluid Gram-stain and/or culture
 - By placental histopathology
- Suspected diagnosis
 - Maternal fever
 - Single intrapartum temp >39.0 C OR
 - Temp of 38.0 C-38.9 C that persists for > 30 minutes
 - AND 1 or more of the following:
 - Maternal leukocytosis
 - Purulent cervical drainage
 - Fetal tachycardia
Antibiotic Stewardship in EOS Management

- Infants exposed to antibiotics before birth
 - GBS IAP
 - Maternal surgical prophylaxis for C/S
 - Intrapartum antibiotic therapy
- 32%-45% of all newborns exposed to antibiotics
- Consequences
 - Increased risk of later childhood health problems (wheezing, asthma, food allergy, IBD, childhood obesity)
 - Alters the developing gut microbiome
 - Changes in stool bacterial composition
 - Impact breastfeeding – delay due to separation from mom

Risk Stratification for Term and LPT Infants (>35 weeks)

- 3 approaches based on risk factors to identify who are at increased risk of EOS
- All have limitations and merits
- None can immediately identify all infants who will have EOS or avoid treatment of infants who are not infected
- Need measures to monitor infants who are not initially identified
- Need to minimize duration of antibiotics in infants who are not infected

1. Categorical Risk Factor Assessment

- Based on algorithms for management of GBS-specific EOS

Risk Factor Based

1. Ill appearing
2. Maternal chorio
3. Maternal GBS+ and inadequate IAP with ROM>18 hrs, or <37 weeks
4. Maternal GBS+ and inadequate IAP, no additional risk factors

Recommendations

- Laboratory testing and empirical antibiotics for Categories 1 and 2
- Laboratory testing for Category 3
- Observation in the hospital for >48 hrs for Category 4

1. Categorical Risk Factor Assessment

- Advantages
 - Since 1996, multiple versions published
 - Substantial data address the effects on GBS-specific disease and on frequency of neonatal EOS evaluation
- Limitations
 - Lack of clear definitions for newborn clinical illness
 - Difficulty establishing diagnosis of maternal chorio
 - Inconsistent consideration of antepartum antibiotics
 - Absent guidance to define abnormal laboratory test results in the newborn infant

2. Multivariate Risk Assessment

- Individualized synthesis of established risk factors and newborn clinical condition to estimate each infant’s risk of EOS
- Predictive models based on a cohort of 608,000 newborn infants based on objective data known at the moment of birth and evolving newborn condition in the first 6-12 hrs of life

2. Multivariate Risk Assessment

- Objective Data
 - Gestational age
 - Highest maternal intrapartum temperature
 - Maternal GBS colonization status
 - Duration of ROM
 - Type and duration of intrapartum antibiotics
2. Multivariate Risk Assessment

Clinical algorithms are based on the final risk estimate

- EOS risk estimated at >1 per 1000 live births, blood culture and enhanced clinical observation
- EOS risk estimated >3 per 1000 live births, blood culture and empiric antibiotics

2. Multivariate Risk Assessment

- Prospective validation in 204,685 infants compared to categorical risk algorithm from CDC
- Blood culture testing declined by 66%
- Empirical antibiotic declined by 48%
- No adverse effects during birth hospitalization
- Readmissions for culture-confirmed infection during the weeks after discharge were rare (~5 in 100,000 births); no difference between method (CDC risk algorithm vs sepsis risk calculator)

2. Multivariate Risk Assessment

- Advantages:
 - Provides info on an individual's infant's risk
 - Includes only objective data, not a clinical diagnosis of maternal chorio
 - Few well-appearing infants are treated with empiric antibiotics
- Concerns:
 - Increased clinical surveillance for some infants in the well nursery/postpartum care unit
 - Classification as ill, equivocal, or well appearing requires ongoing clinical assessment over the first 12 hrs after birth
 - Workflow changes, increased frequency of vitals and other assessments

3. Risk Assessment Primarily Based on Newborn Clinical Condition

- Based on clinical signs of illness
- Ill at birth or develop signs of illness over the first 48 hrs
- Treated with empiric antibiotics or further evaluated by laboratory screening
- Good clinical condition at birth is associated with reduction in risk for EOS of 60-70%
3. Risk Assessment Primarily Based on Newborn Clinical Condition

- Italian study of 7,628 term infants managed by categorical approach vs 7,611 infants managed by serial physical exams q 4-6 hrs x 48 hrs
- Decrease in use of lab tests, blood cultures, and empiric antibiotics
- 2 infants developed EOS and were identified as they showed signs of illness

Advantages:
- Reduction in rate of antibiotic use

Disadvantages:
- Significant changes to newborn care to accommodate universal serial, structured, documented exams
- Clear criteria for additional evaluation and empiric antibiotic use
- Frequent exams
 - Variably acceptance by families
 - May add to cost
- Need to accept that some initially well-appearing infants will develop clinical illness – not a failure of care but expected outcome in this approach

Risk Factors for Preterm EOS

- ***Gestational age (GA)
- Birth weight (BW)
- PROM & Prolonged ROM
- Preterm onset of labor
- Maternal age and race
- Maternal intrapartum fever
- Mode of delivery
- Intrapartum antibiotics

Risk Factors for Preterm EOS

- FT infants – linear relationship between duration of ROM and EOS
- Pretermers –
 - presence of ROM
 - duration of ROM
 - GA
 - +/- chorio
 - administration of latency and intrapartum antibiotics

Risk Factors for Preterm EOS

- Chorioamnionitis = Intraamniotic infection (IAI)
 - Strongly associated EOS in pretermers
 - NNT 6-40 infants per case of confirmed EOS
- Study of 15,318 infants 22-38 weeks
 - C/S, ROM at delivery, No clinical chorio
 - NNT 200 infants
 - Above + no histologic chorio
 - NNT 380 infants
- Study of 5313 VLBW infants, with 109 cases of EOS over 25 years
 - 97% of cases with some combo of PROM, preterm labor or concern for IAI

Risk Categorization for Preterm Infants

- Nearly universal practice of empirical antibiotic use because of uncertainty in EOS risk assessment
- Can’t use same strategies as for FT
 - 2/3 of preterm births are associated with PTL, PROM, or IUl
 - Sepsis calculator does not apply <34.0 weeks
- Who is at lowest risk?
Preterm Infants at Lower Risk for EOS

• Obstetrical indication for preterm birth
 – Maternal preeclampsia
 – Noninfectious medical illness
 – Placental insufficiency
• C-section
• Absence of labor, attempts to induce labor, or ROM before delivery
• Acceptable clinical approaches:
 – No labs, no antibiotics OR
 – Blood culture and clinical monitoring
• If no clinical improvement after initial stabilization and/or if have severe systemic instability, consider empirical antibiotics

Preterm Infants at Higher Risk for EOS

• Cervical incompetence
• Preterm labor
• PROM
• Chorioamnionitis/IAI
• Acute and otherwise unexplained onset of nonreassuring fetal status

• Recommendations:
 – Blood Culture
 – Empiric antibiotics
 – Consider CSF culture, ideally prior to antibiotics

NOW WHAT??

Lab Assessment – Blood Culture

– Diagnostic standard for EOS
– Minimum of 1 ml
– No effect of intrapartum antibiotic therapy on time to positivity
– Median time to positivity is <24 hrs in FT infants and VLBW infants
– 2 separate cultures may be done
– 1 aerobic and 1 anaerobic culture may be done

Lab Assessment - CSF

• Meningitis
 – FT incidence = 0.02 – 0.04 /1000 live births
 – Incidence at 22-28 weeks = 0.7 cases/1000 live births. May be underestimated b/c LP often done after starting antibiotics
 – FT – highest risk are those with critical illness
 – Incidence of culture-confirmed meningitis in the absence of culture-confirmed bacteremia is 1-2 cases/100,000 live births
 – No meningitis in very preterm who were in lower risk category
• CSF Culture
 – Ideally done along with blood culture, before antibiotics
 – Often limited by clinical condition preventing ability to do LP
 – CSF culture and analysis should be done if + blood culture
Lab Assessment – WBC, differential, I/T ratio, ANC

- Affected by:
 - GA
 - Sex
 - Mode of delivery
 - Fetal bone marrow depression – maternal preeclampsia or placental insufficiency
 - Prolonged exposure to inflammatory signals such as in PROM
- As incidence of EOS declines, clinical utility of WBC also declines
- Extreme values have highest likelihood ratios but low sensitivity

Lab Assessment – Other Inflammatory Markers

- CRP, procalcitonin, soluble IL-2 receptor, IL-6, IL-8, TNF-alpha, CD64
- CRP and procalcitonin increase in response to inflammatory stimuli
 - Infection
 - Asphyxia
 - Pneumothorax
- Single values of CRP or procalcitonin after birth are neither sensitive or specific
- Consistently normal values of CRP or procalcitonin over the 1st 48 hrs associated with the absence of EOS
- Serial abnormal values alone should not be used to decide whether to administer antibiotics in the absence of culture-confirmed infection

Lab Assessment – WBC, differential, I/T ratio, ANC

- FT/LPT
 - 2 studies – none of the components performed well but extreme values associated with highest LR, but low sensitivity
 - WBC < 5000 or < 1000
 - I/T > 0.3 or > 0.5
 - ANC < 2000 or < 100
- I/T Squared (I/T divided by the ANC)
 - Modest sensitivity and specificity
 - Independent of age in hours

Preterm
- Likelihood Ratio (LR) > 3
 - Likelihood of infection at 3x higher
 - WBC < 1000
 - ANC < 1000
 - I/T > 0.25
- Modest relationship to EOS
 - WBC > 50,000 (LR 2.3)
 - Platelet count < 50,000 (LR 2.2)

Lab Assessment – Other Inflammatory Markers

- CRP, procalcitonin, soluble IL-2 receptor, IL-6, IL-8, TNF-alpha, CD64
- CRP and procalcitonin increase in response to inflammatory stimuli
 - Infection
 - Asphyxia
 - Pneumothorax
- Single values of CRP or procalcitonin after birth are neither sensitive or specific
- Consistently normal values of CRP or procalcitonin over the 1st 48 hrs associated with the absence of EOS
- Serial abnormal values alone should not be used to decide whether to administer antibiotics in the absence of culture-confirmed infection

Treatment

- Effective against GBS, most streptococcal and enterococcal species, Listeria
- 2/3 of E. coli are resistant to Amp but majority are sensitive to Gent
- Extended beta lactamase producing organisms are rare in the U.S., therefore empirical use of broader-spectrum abx may be harmful
- Small percentage of E. coli are resistant to both Amp and Gent
 - FT, critically ill – addition of broader spectrum therapy
 - Preterm – severely ill, higher risk for Gram negative sepsis (prolonged PROM, exposed to prolonged antepartum antibiotics) – addition of broader spectrum therapy

Treatment – Amp and Gent

- GBS – 40-45%
- E. coli – 10-15%
- Amp and Gent

Preterm
- E. coli – ~ 50%
- GBS – ~ 20%
- Amp and Gent

Treatment

- Positive blood culture – Need to do LP
- Serial daily blood cultures until sterile
- Duration of therapy
 - Red Book
 - CSF results
 - Achievement of sterile cultures
- Consult ID
 - Complicated by meningitis or other site specific infections
 - Resistant or atypical organisms
Treatment

- Negative blood culture
- Duration of antibiotics – 36-48 hrs, unless evidence of site specific infection
- FT – unexplained critical cardiorespiratory illness may justify full course of antibiotics
 - Continuing empirical antibiotics in response to lab abnormalities is rarely justified among well-appearing term infants
- Preterm – often have persistent cardiorespiratory instability so not an indication alone for prolonged antibiotic therapy
 - Continuing empirical antibiotics in response to lab abnormalities, particularly in the setting of maternal obstetrical conditions known to affect fetal hematopoiesis is rarely justified

Prevention

- Appropriate maternal intrapartum antibiotic prophylaxis (IAP)
 - GBS
 - IAI – suspected or confirmed
- IAP or neonatal EOS practices do not prevent late-onset infections
 - Preterm infants susceptible to late onset GBS infection
 - 40% of late onset GBS is in ≤ 34.6 weekers

Summary

- Identification and empirical antibiotic treatment of newborns who are at risk for EOS
- These practices do not prevent EOS
- Risk stratification is different for FT and preterm infants
- Diagnosis is by positive blood or CSF cultures, not other lab tests
- Amp and Gent – empirical antibiotic coverage for EOS
- Discontinue empirical antibiotics at 36-48 hrs if cultures are negative, unless there is clear evidence of site specific infection